
Real Numbers and the Number Line

@ Common Core State Standards

Prepares for N-RN.B.3 Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational . . .

MP 1, MP 3, MP 6

Objectives To classify, graph, and compare real numbers To find and estimate square roots

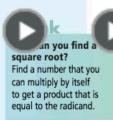
The diagrams in the Solve It model what happens when you multiply a number by itself to form a product. When you do this, the original number is called a $square\ root$ of the product.

- square root
- radicand
- radical
- perfect square
- set
- element of a setsubset
- rational numbers
- natural numberswhole numbers
- integers
- irrational
- numbers
 real numbers
- real number
 inequality

Key Concept Square Root

Algebra A number a is a square root of a number b if $a^2 = b$.

Example $7^2 = 49$, so 7 is a square root of 49.


Essential Understanding You can use the definition above to find the exact square roots of some nonnegative numbers. You can approximate the square roots of other nonnegative numbers.

The radical symbol $\sqrt{}$ indicates a nonnegative square root, also called a *principal square root*. The expression under the radical symbol is called the **radicand**.

radical symbol $\rightarrow \sqrt{a} \leftarrow$ radicand

Together, the radical symbol and radicand form a radical. You will learn about negative square roots in Lesson 1-6.

take note

What is the simplified form of each expression?

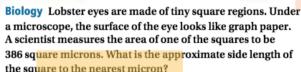
 $\triangle \sqrt{81} = 9$

 $9^2 = 81$, so 9 is a square root of 81.

 $\sqrt{\frac{9}{16}} = \frac{3}{4} \quad \left(\frac{3}{4}\right)^2 = \frac{9}{16}, \text{ so } \frac{3}{4} \text{ is a square root of } \frac{9}{16}.$

Got It? 1. What is the simplified form of each expression?

The square of an integer is called a perfect square. For example,


a. $\sqrt{64}$

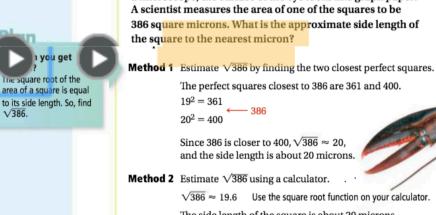
b. $\sqrt{25}$

c. $\sqrt{\frac{1}{36}}$

d. $\sqrt{\frac{81}{121}}$

49 is a perfect square because $7^2 = 49$. When a radicand is not a perfect square, you can estimate the square root of the radicand. Problem 2 Estimating a Square Root STEM

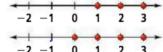
 $\sqrt{386} \approx 19.6$ Use the square root function on your calculator.


The side length of the square is about 20 microns.

Got It? 2. What is the value of $\sqrt{34}$ to the nearest integer?

Essential Understanding Numbers can be classified by their characteristics. Some types of numbers can be represented on the number line.

You can classify numbers using sets. A set is a well-defined collection of objects. Each object is called an element of the set. A subset of a set consists of elements from the given set. You can list the elements of a set within braces { }.



A **rational number** is any number that you can write in the form $\frac{a}{b}$, where a and b are integers and $b \neq 0$. A rational number in decimal form is either a terminating decimal such as 5.45 or a repeating decimal such as 0.41666..., which you can write as $0.41\overline{6}$. Each graph below shows a subset of the rational numbers on a number line.

Natural numbers

$$\{1, 2, 3, \dots\}$$

Whole numbers

Integers

$$\{\ldots -2, -1, 0, 1, 2, 3, \ldots\}$$

An **irrational number** cannot be represented as the quotient of two integers. In decimal form, irrational numbers do not terminate or repeat. Here are some examples.

$$\pi = 3.14159265...$$

Some square roots are rational numbers and some are irrational numbers. If a whole number is not a perfect square, its square root is irrational.

Rational

$$\sqrt{4}=2$$

$$\sqrt{25} = 5$$

Irrational $\sqrt{3} = 1.73205080...$

$$\sqrt{10} = 3.16227766...$$

Rational numbers and irrational numbers form the set of real numbers.

Think

What clues can you use to classify real numbers?

Look for negative signs, fractions, decimals that do or do not terminate or repeat, and radicands not perfect Problem 3 Classifying Real Numbers

To which subsets of the real numbers does each number belong?

- 15 natural numbers, whole numbers, integers, rational numbers
- □ -1.4583 rational numbers (since -1.4583 is a terminating decimal)

Got It? 3. To which subsets of the real numbers does each number belong?

a.
$$\sqrt{9}$$

b.
$$\frac{3}{10}$$

Irrational Numbers $\sqrt{10}$ $-\sqrt{123}$

0.1010010001...

 π

Concept Summary Real Numbers

Real Numbers

Rational Numbers	Integers Whole		
$\frac{-2}{3}$	-3	Numbers	Natural Numbers
0.3	- <u>10</u>	0	√25 4 7
$\sqrt{0.25}$	$-\sqrt{16}$		2 /

An inequality is a mathematical sentence that compares the values of two expressions using an inequality symbol. The symbols are

<, less than

≤, less than or equal to

>, greater than

≥, greater than or equal to

Write the numbers in the same form, such as decimal form.

What is an inequality that compares the numbers $\sqrt{17}$ and $4\frac{1}{3}$?

 $\sqrt{17} = 4.12310...$

Write the square root as a decimal.

 $4\frac{1}{2} = 4.\overline{3}$

Write the fraction as a decimal.

$$\sqrt[3]{17} < 4\frac{1}{2}$$

Compare using an inequality symbol.

Got It? 4. a. What is an inequality that compares the numbers $\sqrt{129}$ and 11.52?

b. Reasoning In Problem 4, is there another inequality you can write that compares the two numbers? Explain.

You can graph and order all real numbers using a number line.

Problem 5 Graphing and Ordering Real Numbers

Multiple Choice What is the order of $\sqrt{4}$, 0.4, $-\frac{2}{3}$, $\sqrt{2}$, and -1.5 from least to greatest?

$$\bigcirc$$
 $-\frac{2}{3}$, 0.4, -1.5, $\sqrt{2}$, $\sqrt{4}$

$$\bigcirc$$
 -1.5, $-\frac{2}{3}$, 0.4, $\sqrt{2}$, $\sqrt{4}$

$$\mathbb{B}$$
 -1.5, $\sqrt{2}$, 0.4, $\sqrt{4}$, $-\frac{2}{3}$

$$\sqrt{4}$$
, $\sqrt{2}$, 0.4, $-\frac{2}{3}$, -1.5

Five real numbers

Order of numbers from least to greatest

Graph the numbers on a number line.

Why is it useful to rewrite numbers in decimal form?

It allows you to compare numbers whose values are close, like \(\frac{1}{4} \) and 0.26. First, write the numbers that are not in decimal form as decimals: $\sqrt{4} = 2$, $-\frac{2}{3} \approx -0.67$, and $\sqrt{2}\approx 1.41$. Then graph all five numbers on the number line to order the numbers, and read the graph from left to right.

From least to greatest, the numbers are -1.5, $-\frac{2}{3}$, 0.4, $\sqrt{2}$, and $\sqrt{4}$. The correct

Got It? 5. Graph 3.5, -2.1, $\sqrt{9}$, $-\frac{7}{2}$, and $\sqrt{5}$ on a number line. What is the order of the numbers from least to greatest?

Lesson Check

Do you know HOW?

Name the subset(s) of the real numbers to which each number belongs.

1. $\sqrt{11}$

2. -7

- **3.** Order $\frac{47}{10}$, 4.1, -5, and $\sqrt{16}$ from least to greatest.
- 4. A square card has an area of 15 in.2. What is the approximate side length of the card?

- 6 5. Vocabulary What are the two subsets of the real numbers that form the set of real numbers?
- 6. Vocabulary Give an example of a rational number that is not an integer.
- Reasoning Tell whether each square root is rational or irrational. Explain.

7. $\sqrt{100}$

8. $\sqrt{0.29}$

Real Numbers and the Number Line

Vocabulary

Review

1. Circle the numbers that are *perfect squares*.

1 12	16	5	20
100	121	200	289

Vocabulary Builder

square root (noun) skwer root

Definition: The **square root** of a number is a number that when multiplied by itself is equal to the given number.

Using Symbols:
$$\sqrt{16} = 4$$

Using Words: The **square root** of 16 is 4. It means, "I multiply 4 by itself to get 16."

Use Your Vocabulary

2. Use what you know about *perfect squares* and *square roots* to complete the table.

Number	Number Squared		
1	1		
2	4		
3			
4			
5			
	36		

Number	Number Squared		
7	49		
	64		
	81		
11			

square root

 $\sqrt{16} = 4$

because

 $4^2 = 16$

Problem 1 Simplifying Square Root Expressions

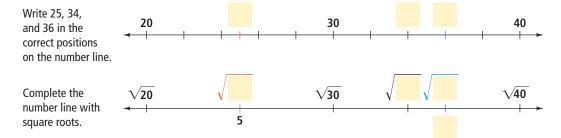
Got It? What is the simplified form of $\sqrt{64}$?

3. Circle the equation that uses the positive square root of 64.

$$16 \cdot 4 = 64$$

$$32 \cdot 2 = 64$$

$$8 \cdot 8 = 64$$


4. The simplified form of $\sqrt{64}$ is

Problem 2 Estimating a Square Root

Got lt? What is the value of $\sqrt{34}$ to the nearest integer?

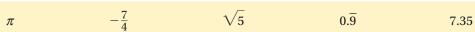
5. Use the number lines below to find the perfect squares closest to 34.

- **6.** Since 34 is closer to than to
 - $\sqrt{34}$ is closer to than to
 - So, the value of $\sqrt{34}$ to the nearest integer is

You can classify numbers using *sets*. A **set** is a well-defined collection of objects. Each object in the set is called an **element** of the set. A **subset** of a set consists of elements from the given set. You can list the elements of a set within braces { }.

7. Complete the *sets* of numbers.

Natural numbers


Whole numbers

Integers

$$\left\{\ldots,-2,\ldots,0,1,\ldots,3,\ldots\right\}$$

A **rational number** is any number that you can write in the form $\frac{a}{b}$, where a and b are integers and $b \neq 0$. A rational number in decimal form is either a terminating decimal such as 5.45 or a repeating decimal such as 0.333..., which you can write as $0.\overline{3}$.

8. Cross out the numbers that are NOT *rational numbers*.

An **irrational number** cannot be represented as the quotient of two integers. In decimal form, irrational numbers do not terminate or repeat. Irrational numbers include π and $\sqrt{2}$.

Got It? To which subsets of the real numbers does each number belong?

- $\sqrt{9}$

-0.45

- $\sqrt{12}$
- **9.** Is each number an element of the set? Place a ✓ if it is. Place an ✗ if it is not.

Number	Whole Numbers	Integers	Rational Numbers	Irrational Numbers
$\sqrt{9}$	✓	✓	✓	Х
3 10				
-0.45				
$\sqrt{12}$				

Concept Summary Real Numbers

10. Write each of the numbers -7, -5.43, 0, $\frac{3}{7}$, π , and $\sqrt{7}$ in a box below. The number 5 has been placed for you.

Real Numbers

Rational numbers	Integers	Whole numbers	Natural numbers	Irrational numbers
			5	

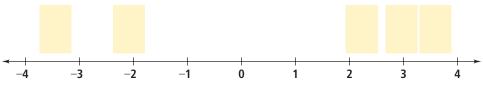
Problem 4 Comparing Real Numbers

Got lt? What is an inequality that compares the numbers $\sqrt{129}$ and 11.52?

- **11.** What is the approximate value of $\sqrt{129}$ to the nearest hundredth?
- **12.** Use <, >, or = to complete the statement.

$$\sqrt{129}$$
 11.52

Got lt? Graph 3.5, -2.1, $\sqrt{9}$, $-\frac{7}{2}$, and $\sqrt{5}$ on a number line. What is the order of the numbers from least to greatest?


13. Simplify the radicals and convert the fraction to a mixed number.

 $\sqrt{9} =$

$$\sqrt{5} \approx$$

14. Now use the number line to graph the five original numbers. Be sure to label each point with the correct number.

15. Now list the five original numbers from *least* to *greatest*.

Lesson Check • Do you UNDERSTAND?

Reasoning Tell whether $\sqrt{100}$ and $\sqrt{0.29}$ are *rational* or *irrational*. Explain.

16. First try to simplify the expression. If it does not simplify, put an X in the box.

 $\sqrt{100} =$

$$\sqrt{0.29} =$$

17. Tell whether each square root is *rational* or *irrational*. Explain your reasoning.

Math Success

Check off the vocabulary words that you understand.

- square root
- rational numbers
- irrational numbers

Now I

get it!

real numbers

Rate how well you can classify and order real numbers.

Need to review

Practice

Simplify each expression.

9.
$$\sqrt{\frac{64}{9}}$$

10.
$$\sqrt{\frac{25}{81}}$$

11.
$$\sqrt{\frac{225}{169}}$$

12.
$$\sqrt{\frac{1}{625}}$$

Estimate the square root. Round to the nearest integer.

Find the approximate side length of each square figure to the nearest whole unit.

- **25.** a rug with an area of 64 ft²
- **26.** an exercise mat that is 6.25 m^2
- **27.** a plate that is 49 cm^2

Practice (continued)

Name the subset(s) of the real numbers to which each number belongs.

28.
$$\frac{12}{18}$$

29. -5

30. π

31 √2

33. √13

34. $-\frac{4}{3}$

35, √61

Compare the numbers in each exercise using an inequality symbol.

37.
$$\frac{4}{5}$$
, $\sqrt{1.3}$

38.
$$\pi$$
, $\frac{19}{6}$

39.
$$\sqrt{81}$$
, $-\sqrt{121}$

40.
$$\frac{27}{17}$$
, 1.7781356

40.
$$\frac{27}{17}$$
, 1.7781356 **41.** $-\frac{14}{15}$, $\sqrt{0.8711}$

Order the numbers from least to greatest.

42.
$$1.875, \sqrt{64}, -\sqrt{121}$$

43.
$$\sqrt{0.8711}, \frac{4}{5}, \sqrt{1.3}$$

43.
$$\sqrt{0.8711}$$
, $\frac{4}{5}$, $\sqrt{1.3}$ 44. 8.775 , $\sqrt{67.4698}$, $\frac{64.56}{8.477}$

45.
$$-\frac{14}{15}$$
, 5.587, $\sqrt{81}$ 46. $\frac{100}{22}$, $\sqrt{25}$, $\frac{27}{17}$

46.
$$\frac{100}{22}$$
, $\sqrt{25}$, $\frac{27}{17}$

47.
$$\pi$$
, $\sqrt{10.5625}$, $-\frac{15}{5.8}$

48. Marsha, Josh, and Tyler are comparing how fast they can type. Marsha types 125 words in 7.5 minutes. Josh types 65 words in 3 minutes. Tyler types 400 words in 28 minutes. Order the students according to who can type the fastest.